Slightly improved sum-product estimates in fields of prime order

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Slightly Improved Sum-product Estimates in Fields of Prime Order

Let Fp be the field of residue classes modulo a prime number p and let A be a nonempty subset of Fp. In this paper we show that if |A| p , then max{|A ± A|, |AA|} |A|; if |A| p, then max{|A ± A|, |AA|} v min{|A|( |A| p0.5 ), |A|( p |A| )}. These results slightly improve the estimates of Bourgain-Garaev and Shen. Sum-product estimates on different sets are also considered.

متن کامل

The Sum-product Estimate for Large Subsets of Prime Fields

Let Fp be the field of prime order p. It is known that for any integer N ∈ [1, p] one can construct a subset A ⊂ Fp with |A| = N such that max{|A+ A|, |AA|} p|A|. One of the results of the present paper implies that if A ⊂ Fp with |A| > p2/3, then max{|A+ A|, |AA|} p|A|.

متن کامل

Sum-product Estimates in Finite Fields via Kloosterman Sums

We establish improved sum-product bounds in finite fields using incidence theorems based on bounds for classical Kloosterman and related sums.

متن کامل

Pinned distance sets, Wolff’s exponent in finite fields and improved sum-product estimates

An analog of the Falconer distance problem in vector spaces over finite fields asks for the threshold α > 0 such that |∆(E)| & q whenever |E| & q, where E ⊂ Fq , the d-dimensional vector space over a finite field with q elements (not necessarily prime). Here ∆(E) = {(x1 − y1) 2 + · · ·+ (xd − yd) 2 : x, y ∈ E}. The second listed author and Misha Rudnev ([4]) established the threshold d+1 2 , an...

متن کامل

New Sum-product Type Estimates over Finite Fields

Let F be a field with positive odd characteristic p. We prove a variety of new sum-product type estimates over F . They are derived from the theorem that the number of incidences between m points and n planes in the projective three-space PG(3, F ), with m ≥ n = O(p), is O(m √ n+ km), where k denotes the maximum number of collinear planes. The main result is a significant improvement of the sta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 2011

ISSN: 0065-1036,1730-6264

DOI: 10.4064/aa147-2-4